TY - JOUR
T1 - Volume complexity of dS bubbles
AU - Auzzi, Roberto
AU - Nardelli, Giuseppe
AU - Ungureanu, Gabriel Pedde
AU - Zenoni, Nicolo
PY - 2023
Y1 - 2023
N2 - In the framework of the static patch approach to de Sitter holography introduced in [L. Susskind, J. Hologr. Appl. Phys. 1, 1 (2021)], the growth of holographic complexity has a hyperfast behavior, which leads to a divergence in a finite time. This is very different from the anti–de Sitter (AdS) spacetime, where instead the complexity rate asymptotically reaches a constant value. We study holographic volume complexity in a class of asymptotically AdS geometries which include de Sitter bubbles in their interior. With the exception of the static bubble case, the complexity obtained from the volume of the smooth extremal surfaces which are anchored just to the AdS boundary has a similar behavior to the AdS case, because it asymptotically grows linearly with time. The static bubble configuration has a zero complexity rate and corresponds to a discontinuous behavior, which resembles a first order phase transition. If instead we consider extremal surfaces which are anchored at both the AdS boundary and the de Sitter stretched horizon, we find that complexity growth is hyperfast, as in the de Sitter case.
AB - In the framework of the static patch approach to de Sitter holography introduced in [L. Susskind, J. Hologr. Appl. Phys. 1, 1 (2021)], the growth of holographic complexity has a hyperfast behavior, which leads to a divergence in a finite time. This is very different from the anti–de Sitter (AdS) spacetime, where instead the complexity rate asymptotically reaches a constant value. We study holographic volume complexity in a class of asymptotically AdS geometries which include de Sitter bubbles in their interior. With the exception of the static bubble case, the complexity obtained from the volume of the smooth extremal surfaces which are anchored just to the AdS boundary has a similar behavior to the AdS case, because it asymptotically grows linearly with time. The static bubble configuration has a zero complexity rate and corresponds to a discontinuous behavior, which resembles a first order phase transition. If instead we consider extremal surfaces which are anchored at both the AdS boundary and the de Sitter stretched horizon, we find that complexity growth is hyperfast, as in the de Sitter case.
KW - AdS/CFT correspondence
KW - AdS/CFT correspondence
UR - https://publicatt.unicatt.it/handle/10807/252774
U2 - 10.1103/PhysRevD.108.026006
DO - 10.1103/PhysRevD.108.026006
M3 - Article
SN - 2470-0010
SP - 1
EP - 28
JO - Physical Review D
JF - Physical Review D
IS - 108
ER -