A Multiple Rolling Turning Point Detection Method

Bramante Riccardo, Silvia Facchinetti, Diego Zappa

Risultato della ricerca: Contributo in libroChapter

Abstract

Detecting time series turning points is crucial in the financial field where series are characterized by several changes in their trajectories. This paper proposes a multiple rolling test of hypothesis of a regression model slope change where the entry and exit windows contain more than one observation, thus contributing to a significant reduction of false signals and the corresponding probability of wrong decisions. To give evidence of the procedure's performance in predicting turning points, we consider – as a preliminary analysis – a set of twenty stocks selected from the EURO STOXX 50 Index, covering the historical period 2010 – 2021. The model is run with different values of the main parameters, providing additional information in investment decision making.
Lingua originaleEnglish
Titolo della pubblicazione ospiteInternational Conference on Advanced Research in Management, Business and Finance
EditoreDiamond Scientific Publication
Pagine36-43
Numero di pagine8
ISBN (stampa)978-609-485-255-8
Stato di pubblicazionePubblicato - 2022

Keywords

  • Financial time series
  • Time varying parameters
  • Turning point detection

Fingerprint

Entra nei temi di ricerca di 'A Multiple Rolling Turning Point Detection Method'. Insieme formano una fingerprint unica.

Cita questo